
Pushing the Boundaries with bdrmapIT: Mapping Router
Ownership at Internet Scale

Alexander Marder

University of Pennsylvania

amarder@seas.upenn.edu

Matthew Luckie

University of Waikato

mjl@wand.net.nz

Amogh Dhamdhere

CAIDA / UC San Diego

amogh@caida.org

Bradley Huffaker

CAIDA / UC San Diego

bradley@caida.org

kc claffy

CAIDA / UC San Diego

kc@caida.org

Jonathan M. Smith

University of Pennsylvania

jms@seas.upenn.edu

ABSTRACT
Two complementary approaches to mapping network boundaries

from traceroute paths recently emerged [27,31]. Both approaches

apply heuristics to inform inferences extracted from traceroute mea-

surement campaigns. bdrmap [27] used targeted traceroutes from a

specific network, alias resolution probing techniques, and AS rela-

tionship inferences, to infer the boundaries of that specific network

and the other networks attached at each boundary. MAPIT [31]

tackled the ambitious challenge of inferring all AS-level network
boundaries in a massive archived collection of traceroutes launched

from many different networks. Both were substantial contribu-

tions to the state-of-the-art, and inspired a collaboration to explore

the potential to combine the approaches. We present and evaluate

bdrmapIT, the result of that exploration, which yielded a more com-

plete, accurate, and general solution to this persistent and central

challenge of Internet topology research. bdrmapIT achieves 91.8%-

98.8% accuracy when mapping AS boundaries in two Internet-wide

traceroute datasets, vastly improving on MAP-IT’s coverage without

sacrificing bdrmap’s ability to map a single network. The bdrmapIT

source code is available at https://git.io/fAsI0.

ACM Reference Format:
Alexander Marder, Matthew Luckie, Amogh Dhamdhere, Bradley Huf-

faker, kc claffy, and Jonathan M. Smith. 2018. Pushing the Boundaries with

bdrmapIT: Mapping Router Ownership at Internet Scale. In 2018 Internet
Measurement Conference (IMC ’18), October 31-November 2, 2018, Boston, MA,
USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3278532.

3278538

1 INTRODUCTION
A long-standing challenge of Internet topology research is router-

level topology discovery and ownership inference, which relies on

IP-level measurements that trick routers into revealing network

structure (e.g., traceroute), and heuristics to interpret such measure-

ments. The challenge is most daunting in between autonomously

managed networks. The task of mapping the borders between net-

works at the router level is equivalent to the task of identifying

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

IMC ’18, October 31-November 2, 2018, Boston, MA, USA
© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5619-0/18/10.

https://doi.org/10.1145/3278532.3278538

routers in traceroute measurements, and then inferring who owns

those routers.

There are fundamental architectural constraints that hinder

router ownership inference: the TCP/IP architecture has no notion

of interdomain boundaries at the network layer, nor any notion

of boundaries around a single router. That is, at the IP layer, there

is no unique router identifier. Router software diversity further

complicates inference: a given router may respond to traceroute

with a source address obtained from the interface it received the

probe packet on, the interface it sends the reply on, or some other

interface. Due to network addressing practices, the IP addresses on

these interfaces may not even belong to the owner of the router.

When constructing an Internet-scale topology, superimposing mea-

surements from multiple vantage points (VPs) can mitigate some of

these risks, but results in topologies where links farther from VPs

are less likely to be observed [24], and those that are observed have

fewer constraints to use in ownership inference. Finally, validat-

ing router-level inferences against ground truth requires tedious

cooperation from operators who have limited incentive or time.

Techniques to accurately map network borders were elusive

until 2016, when two independently conceived approaches [27,

31] achieved accuracy significantly superior to the then state-of-

the-art. Both MAP-IT and bdrmap use heuristics to minimize well-

known errors in interpreting traceroute data, but bdrmap developed

specialized heuristics to analyze a router-level graph it inferred from

one vantage point, while MAP-IT used an iterative graph-refinement

process on an interface-level graph previously gathered from many

vantage points. The different goals, design choices, and assumptions

inspired us to ask: can we leverage the lessons from both efforts to

create a more general-purpose solution? We report the results of

that effort here.

A general solution to the border mapping and router owner-

ship inference problem, operating at Internet scale, will accelerate

progress in a number of research and operational pursuits. For

example, CAIDA has used bdrmap for three years to study interdo-

main congestion, but has restricted itself to links involving the mea-

surement VP’s network; a generalized border mapping tool could

amplify visibility to a much broader set of interdomain links. Other

congestion inference [37] and resilience assessment [14,25,33,36]

research could be extended to identify networks and links expe-

riencing congestion. A new border mapping tool could address

well-known pitfalls with less rigorous approaches to identifying

interdomain links [32,38]. MAP-IT was already instrumental in un-

covering bugs in traceroute implementations [34]—investigation of

56

https://git.io/fAsI0
https://doi.org/10.1145/3278532.3278538
https://doi.org/10.1145/3278532.3278538
https://doi.org/10.1145/3278532.3278538

IMC ’18, October 31-November 2, 2018, Boston, MA, USA A. Marder et al.

anomalous MAP-IT inferences revealed that the M-lab traceroutes

used as input were corrupted.

We make the following three contributions:

(1) We developed and implemented bdrmapIT, which uses the

sophisticated bdrmap heuristics as additional input to the MAP-IT

boundary location algorithm. In §2 we discuss how we leverage

the strengths of bdrmap and MAP-IT, §3 gives an overview of the

synthesized approach, and §4, §5, and §6 detail the algorithm.

(2) We demonstrated the superior accuracy and coverage of

bdrmapIT over either previous approach. We validated bdrmapIT

against ground truth from a tier 1, a large access, and two R&E

networks, achieving 91.8%-98.8% accuracy, despite not using tracer-

oute VPs in any of the validating networks. We also demonstrated

that bdrmapIT’s accuracy is independent of the number of vantage

points: the performance is equivalent whenwe decrease the number

of VPs from 80 to 20 (§7).

(3) We release our implementation and source code to promote

reproducibility, and so that others can use our tool for their own

analyses. We have incorporated bdrmapIT into CAIDA’s ITDK [6]

generation process.

2 RELATEDWORK
The canonical approach to convert IP-level traceroute output to an

AS-level path uses the origin AS announcing the longest matching

prefix into the global BGP routing system. The risk of this approach

is that some routers respond to traceroute probes with a source IP

address belonging to a different network. In 2010, Zhang reported

that between 16% and 47% of AS adjacencies inferred using the

canonical longest prefix match approach were likely false [40]. In

2003, Mao’s “AS traceroute” [30] used correlated BGP and tracer-

oute views from the same VP, DNS names, and WHOIS data to

perform IP-AS mappings, later improving them further using dy-

namic programming, although only for a /24 address granular-

ity [29]. Generally, interdomain links use /30 or /31 prefixes to use

address space efficiently, and co-located BGP and traceroute views

are rare. In 2009, Chen et al. proposed a set of heuristics to distill

some missing AS-level links from traceroute data [16]. In 2010, Huf-

faker et al. developed and validated four different router ownership
heuristics using IPv4 alias resolution, inferred AS relationships,

and degree [18] separately from each other; their best-performing

heuristic was correct 71% of the time.

In 2016, two distinct approaches towards inferring router own-

ership were proposed independently: bdrmap [27], and MAP-IT [31].

bdrmap focuses on identifying all interdomain links observable by a

single VP in a hosting AS, and consists of data collection and router

ownership inference components. The data collection component

conducts traceroutes from the VP towards every prefix routed in the

Internet. The data collection phase is reactive, using alias resolution

to infer which interfaces returned by traceroute belong to the same

routers, and additional traceroutes to different addresses within

a single prefix if a prior traceroute might have found an off-path

interface within the target AS.

The inference component of bdrmap uses the collected data to

infer router ownership within the hosting AS and adjacent ASes.

Starting at the VP, bdrmap performs a breadth-first search based

on hop-count from the VP of the traceroute responses to identify

§ Step bdrmap MAP-IT

4 Phase 1: Construct the Graph

4.1 Label AS-level Metadata X X

4.2 Assign Link Confidence Labels X

4.3 Create Origin AS Sets

4.4 Identify Destination ASes X

5 Phase 2: Annotate Last Hops

5.1 When Dest. AS set is empty X

5.2 When Dest. AS set is not empty X

6 Phase 3: Graph Refinement

6.1 Annotate IRs X X

6.1.1 Apply Link Vote Heuristics X

6.1.2 Correct Reallocated Prefixes

6.1.3 Check for Exceptions

6.1.4 Apply IR Vote Heuristics X

6.1.5 Check for a Hidden AS X

6.2 Annotate Interfaces X

6.3 Refine the Graph X

Table 1: bdrmapIT heuristics adapted from bdrmap and MAP-IT.

routers internal to the VP network, defined as all routers that appear

prior to an interface address announced by the VP network in the

traceroutes. Subsequent routers are either operated by the VP net-

work, or by a directly connected neighbor. bdrmap uses heuristics to

infer ownership of subsequent routers until all routers immediately

subsequent to the network boundary have been mapped to other

ASes.

bdrmap heuristics correctly infer router ownership when an edge

network operator drops traceroute probes at their border router,

when routers reply using unrouted IP addresses, when routers

respond with an off-path address announced by a third party in

BGP, and uses AS relationships to reason about ownership when

traceroute returns IP paths that are not congruent with BGP policy.

MAP-IT consists only of an inference component, to identify in-

terdomain links (between ISP networks) in the Internet core. In

contrast to bdrmap, MAP-IT aggregates all available traceroute data

collected by many VPs in many ASes, but does not use any alias

resolution to infer routers. Instead, MAP-IT employs localized rea-

soning on an interface-level graph, drawing inferences from each

interface and its neighbors in isolation. MAP-IT iterates over the set

of interfaces several times, in each iteration identifying the inter-

faces used for interdomain links. The primary inference method is

to find an interface with an address originated by one AS, where

a plurality of either its subsequent or preceding interfaces map

to another AS, indicating a link between the two networks. After

each iteration, MAP-IT refines the graph, enabling more accurate

interdomain inferences in subsequent iterations until an iteration

yields no changes.

Our new technique, implemented in the bdrmapIT tool, leverages

the strengths of bdrmap and MAP-IT for use in a general-purpose

solution. Specifically: (1) bdrmap infers AS owners only for routers

at the first AS boundary and requires a VP in each network of

interest, and (2) MAP-IT lacks heuristics for edge networks and

low-visibility links, such as routers without subsequent hops in

57

Pushing the Boundaries with bdrmapIT IMC ’18, October 31-November 2, 2018, Boston, MA, USA

Alias
Resolution

AS Origin
Prefixes

IXP
Prefixes

Traceroutes

Construct
Graph §4 Destination

ASes

Hybrid
Graph

Last Hop
Heuristic

§5

Last Hop
Annotations

Annotate
Routers
§6.1

Annotate
Interfaces
§6.2

Loop
Until

Repeated
State

OutputRepeated
State

AS
Relationships

Figure 1: bdrmapIT’s three phases: Constructing the Graph,
Annotating Last Hops, and Annotating IRs and Interfaces.

traceroute due to firewalls, and does not use router alias inferences.

To create bdrmapIT, we adapted bdrmap heuristics to the MAP-IT

graph refinement framework with localized reasoning, yielding a

technique capable of inferring the owner of routers visible from

any number of VPs, in any number of networks. When restricted

to the input for bdrmap or MAP-IT, bdrmapIT is at least as accurate

as the prior techniques. Table 1 gives an overview of bdrmapIT and

the genesis of each heuristic.

We faced technical challenges adapting heuristics into bdrmapIT.

Adapting bdrmap heuristics required removing assumptions made

when mapping a single VP network’s routers to accommodate

MAP-IT’s local reasoning. First, router ownership inferences become

harder with more AS-level diversity around the router, meaning

that mapping router IP interface addresses to the AS who owns

the router requires more sophisticated heuristics. To overcome this

difficulty, bdrmapIT constructs sets of candidate origin ASes (§4.3)

and iteratively narrows the set. Similarly, bdrmap detects third-party

addresses when it sees an unexpected AS in between the VP AS

and an adjacent network. Other traceroute datasets may expose

third party addresses several AS hops removed from the VP. Our

adapted third-party heuristic uses origin AS sets, destination AS

sets (§4.4), and router operator inferences (§6.1); this technique to

identify third-party addresses improves with the graph refinement

(§6) process adapted from MAP-IT. Finally, adapting MAP-IT’s graph

refinement heuristics to router graphs instead of interface graphs

was a significant challenge. Accommodating alias resolution input

data motivated our strategy laid out in §4.2 and §6.1, where we infer

router operators at the router granularity, without first selecting

an AS for each alias.

– Graph –
IR: Inferred Router

interface: interface used on the IR

subsequent interface: interface that follows an IR interface in a

traceroute

link: inferred connection from IR to subsequent interface

– Origin AS –
interface origin AS: origin AS of interface’s IP address

IR origin AS set: union of IR interfaces’ origin AS sets

L(I Ri , j) (link origin AS set): set of origin ASes observed immedi-

ately previous to the link in a traceroute

DI R (destination set): set of origin ASes of destination IPs of

paths crossing IR

AS annotation: AS of inferred operator of IR or interface

Table 2: Glossary of terms

3 OVERVIEW
bdrmapIT has three phases, illustrated in Fig. 1. The first phase

builds a directed graph from the traceroutes and alias resolution

(§4). The second phase infers the operators of routers that appear

only at the end of traceroutes (§5). These mappings are not subject

to refinement, and provide topological context for mappings in the

final phase. The final phase maps routers observed in the middle of

at least one traceroute path to ASes (§6). The last phase is iterative,

visiting routers and interfaces multiple times to make accurate

inferences.

3.1 Constructing Interface Graph (§4)
bdrmapIT creates an inferred router (IR) graph by combining pre-

viously collected traceroutes with inferred IP router aliases data.

Many datasets have few (or no) aliases resolved, and bdrmapIT will

map AS borders without it, but aliases can improve mapping accu-

racy by providing additional router operator constraints and ensur-

ing a consistent inference for interfaces used on the same router.

Links connect IRs to interfaces seen subsequently in a traceroute

(Figure 2). bdrmapIT works with existing datasets, which dictate

the graph, without the opportunity for additional probing. To aid

our analysis, we store significant graph metadata, e.g., for each

interface we store its origin AS, which is the AS announcing the

longest matching prefix for the IP address of that interface. We label

links according to our confidence in their ability to inform accurate

router ownership inference (§4). We also store the origin AS set for

each link, which contains the origin ASes of all IR interfaces seen

prior to the connected interface. We label IRs with their destination

AS set (§5.2), which contains the destination ASes of the traceroutes

in which any IR interface appears.

In addition to static metadata labels, we include dynamic annota-
tions for every IR and interface, which bdrmapIT continually refines

throughout the algorithm. bdrmapIT assigns annotations when in-

ferring the operators of last hop IRs (§5), as well as during the graph

refinement loop (§6). IR annotations indicate the AS operating the

IR, while interface annotations represent the AS connected to the

interface, i.e., the other side of the link (Fig. 3). When annotating

IRs and interfaces we make two assumptions that are generally but

not always true: that routers (IRs) are operated by a single AS; and

58

IMC ’18, October 31-November 2, 2018, Boston, MA, USA A. Marder et al.

 IR1

a1

c

 IR2

b1

 IR3

b2

a2

(IR1,b2)

(IR1,b1)

hops dst hops dst

path 1: ... a1 b1 b3 path 3: ... c b2 e

path 2: ... a2 b2 d

Figure 2: Using paths 1-3, we build IR1,2,3 (boxes) and the
links between IRs and interfaces (circles).

ASBIR1
ASB

a
ASA

ASA

Figure 3: IR1 (box) is annotated with ASB representing its in-
ferred operator, while its interface (circle), with IP address a,
is annotated with ASA representing that it is inferred to be
connect to a router operated by ASA.

that interdomain links are point-to-point, except public peering

links at IXPs.

3.2 Annotating Last Hops with Ownership (§5)
When the last interface in a traceroute is not the destination, it could

be on the border router of the network containing the destination.

This occurs when an AS configures its firewall to prevent traceroute

responses to probes from other networks. In this phase we infer

the operator of an IR with no outgoing links to be the destination

AS of the paths on which the IR’s interfaces were observed.

This technique is surprisingly effective, and enables us to accu-

rately infer links to networks that do not respond to traceroute

probes from internal routers. These ASes are especially tricky, since

we often do not see any addresses from their address space in the

traceroutes. Some of the AS-links inferred in this step do not ap-

pear in our BGP paths, thus complementing our BGP-observed AS

connectivity. bdrmapIT also relies on these ownership mappings in

the graph refinement step (§6.1).

3.3 Annotating IRs and Interfaces (§6)
In order to deal with traceroute, routing, and IP space artifacts,

the final phase is an iterative process that first annotates the IRs

(§6.1), then annotates the interfaces (§6.2), and then repeats this

process until completion, indicated by a repeated state. Annota-

tions assigned in each iteration help refine the graph, enabling more

accurate annotations in subsequent iterations. Each iteration recon-

siders every annotation assigned based on the current annotations

of neighboring IRs and interfaces. We do not revise the annotations

assigned in the second phase, since those annotations are based

entirely on static metadata.

4 PHASE 1: CONSTRUCT THE GRAPH
The first step is to construct an annotated IR graph from the tracer-

outes, alias resolution data, and external data sources. All subse-

quent refinement on the IR occurs locally, using only the static

metadata labels (from the first phase) or the annotations (which

may change during iterations) of its immediate neighbors. We do

not directly consider remote IRs, but their annotations propagate

across the graph in each iteration. We also extract static graph meta-

data — interface origin ASes and IXP prefixes (§4.1), link confidence

labels (§4.2), origin AS sets (§4.3), and IR destination AS sets (§4.4).

4.1 Label AS-level Metadata
This phase labels the initial graph with additional metadata to

enable subsequent inferences: origin ASes, IXP prefixes, and AS

relationships.

Determining Origin ASes: We assume that one AS among the

origin ASes for interface IP addresses on an IR is more likely than

the others to be the operator of the IR. We derive interface origin

ASes using BGP announcements collected by Routeviews [13] and

RIPE RIS [12]. For each prefix we determine the origin AS as the

last AS in the AS path. To determine the origin AS for an interface,

we use the longest matching prefix from the route announcements.

We then initialize the graph by annotating each interface with the

origin AS of the corresponding IP address and create the IR origin

AS set as the union of the IR’s interface AS mappings.

Not every prefix is visible in BGP announcements, so we sup-

plement this data with RIR delegations [2–4,7,11], using the AS

identifiers in the extended delegation files to match IP prefixes with

ASes. RIR delegations can be stale, since ASes can reassign prefixes,

so we only use the prefixes from RIR delegations not already cov-

ered by a BGP prefix. Of the addresses seen in our experiments,

99.95% have a matching prefix in either BGP announcements, RIR

delegations, or IXP prefixes.

Collecting IXP Addresses: bdrmapIT considers IXP prefixes spe-

cially, since some ASes originate IXP prefixes in BGP, which could

cause unrelated ASes to be included in an origin AS set for an IR.We

therefore compile a list of IXP prefixes using data volunteered by

ISPs and IXPs to PeeringDB [10], Packet Clearing House (PCH) [9],

and EuroIX [5], and do not consider BGP origin ASes for addresses

covered by these prefixes when building origin AS sets.

Inferring AS Relationships: AS relationships constrain the set

of possible paths, so we use them to constrain the set of ASes

used for IR labeling. We rely on Luckie et al.’s technique [28] to
determine whether two adjacent ASes in BGP paths are in a transit

relationship. This technique also infers the customer cone for an

AS, i.e., ASes reachable by customer links [28].

4.2 Assign Link Confidence Labels
The likelihood that an interface-to-interface link is a point-to-point

link depends on the type of ICMP response used to infer the link.We

59

Pushing the Boundaries with bdrmapIT IMC ’18, October 31-November 2, 2018, Boston, MA, USA

Label Priority Description

IRi
N
←→ j 1 Same origin AS or hop-distance of 1,

where j does not respond with ICMP Echo

Reply.

IRi
E
←→ j 2 Hop-distance of 1. j responds with ICMP

Echo Reply.

IRi
M
←→ j 3 Hop-distance > 1. i and j have different

origin ASes.

Table 3: Link type confidence labels: Nexthop (N), Echo (E),
and Multihop (M).

use this dependence to label links with indicators of confidence in

their existence, as follows. For each traceroute, we create a link from

each IR to the first interface seen subsequently in that traceroute.

When we encounter adjacent hops i and j, possibly separated by

private addresses or unresponsive hops, we create a link between

i’s IR (IRi) and j . We label the link with one of three labels in Tab. 3,

determined by the distance between the hops, and the ICMP type of

j’s reply. If a link receives multiple labels, bdrmapIT uses the highest

confidence one.

The highest confidence links, IRi
N
←→ j, provide the most reli-

able information; they also account for 96.4% of links seen in our

traceroute datasets. A link receives this label in two cases. Both

require that j responds with ICMP Time Exceeded or Destination

Unreachable, which typically indicates that the traceroute probe

arrived at interface j on the responding router, or that the router

responded using j . In the first case, i and j have the same origin AS.

We are not concerned with the hop-distance between them since

that same origin AS likely operates them. In the second case, they

have different origin ASes, but i and j have a hop-distance of one.
We consider links derived from adjacent traceroute hops as reliable

as hops with the same origin AS, since ASj indicates that j’s router
is operated by ASj , IRi is operated by ASj , or both.

When j responds with ICMP Echo Reply, we label the link IRi
E
←→

j. Unlike other response types, Echo Replies do not indicate that j
was the ingress or egress interface, but rather that j was an interface
on the responding router. As long as i and j are adjacent, we indicate

this distinction with the label IRi
E
←→ j. Of the IRs in our datasets

with links to at least one subsequent interface, 2.8% have

E
←→ links

but no

N
←→ links.

Lastly, we use label i
M
←→ j when i and j are separated by unre-

sponsive hops or private addresses, and ASi , ASj . In such cases

we cannot assume that i and j are on routers operated by the same

AS, and there could be one or more AS-hops between Ri and Rj .

We use

M
←→ links only when no other link types are available.

Fig. 4 illustrates the process of assigning labels to links. We label

the first link IR1
N
←→ b since the hops are adjacent and IR2 responds

with Time Exceeded. The next two links are labeled IR2
M
←→ c1 and

IR4
N
←→ c2 respectively. In the third link c1 and c2 have the same

origin ASes, leading us to presume the missing hops are operated

by ASc , while we are unable to draw the same inference in the

Hop: 1 2 4 7 8

IPs: a b * c1 * * c2 d

Origin AS: ASA ASB ASC ASC ASD

IR1
a

ASA IR2
b

ASB
N

IR4
c1
ASC

IR7
c2
ASC

N
IR8

d
ASD

?
E M

echo replyTTL expired TTL expired TTL expired

Figure 4: Deriving link labels from a traceroute: Nexthop,
Echo, and Multihop.

 IR1

a1
ASA

c
ASC

 IR2

b1
ASB

 IR3

b2
ASB

a2
ASA

L(IR1,b2)={ASA,ASC}

L(IR1,b1)={A
SA}

Figure 5: Using the paths from figure 2, path segment a1 −
b1 crosses link (IR1,b1), so the AS set L(I R1,b1) contains ASA,
while segments a2 − b2 and c − b2 both cross link (IR1,b2), so
the AS set L(I R1,b2) contains ASA and ASC .

second link. Finally, we label IR7
E
←→ d since IR8 responds with an

Echo Reply, whose source address in this case happened to be an

off-path address, i.e., an interface not used to receive the incoming

traceroute probe packets.

4.3 Assign Origin AS Sets to IRs
When we create a link, IRi ↔ j , where i and j have different origin
ASes, it is not immediately clear if IRi is operated by ASi or ASj .
Making that inference often requires analyzing the AS relationship

between ASi and ASj , so we add the origin AS of interface i to
the link’s origin AS set, LI Ri , j . Each origin AS set is specific to a

link between an IR, in this case the IR containing the interface i ,
and a subsequent interface j. Keeping the origin AS set specific to

link IRi ↔ j, instead of creating a single origin AS set for j, helps
prevent incorrect inferences in the event j ever appears as a third-
party address. At the completion of this phase, LI Ri , j contains all
origin ASes of the IRi ’s interfaces seen immediately prior to j in a

traceroute. In figure 5, L(I R1,b1) containsASA since segment a1 −b1
crossesASA. while L(I R1,b2) contains bothASA andASC since those

ASes are crossed by the path segments a2 − b2 and c − b2.
We use the origin AS set to reason about all of the potential AS

relationships between an IR and a subsequent interface’s origin AS.

For example, if an origin AS set contains {ASA,ASB }, and c has

origin ASASC , then we expect at least one of {ASA,ASB } to have a
relationship with ASC , or that a hidden AS exists between the ASes

in the origin AS set and ASC .
Origin AS sets illustrate a primary challenge of synthesizing

the bdrmap and MAP-IT approaches. Specifically, neither previous

approach had to worry about choosing among multiple origin ASes

60

IMC ’18, October 31-November 2, 2018, Boston, MA, USA A. Marder et al.

dst src IR2
b

ASB
IR1

a2
ASA

IR3
c

ASC
a1
ASA

d
ASD

Figure 6: Traceroute with source address a1 and destination
address d .ASD is the destination AS and c’s IR3 only appears
at the end of our traceroutes. We can use ASD to help deter-
mine IR3’s operating AS.

for a given router in the graph; MAP-IT did not even consider routers,

and bdrmap only mapped the borders of a single, known origin AS.

4.4 Assign Destination ASes to IRs
To correctly label routers found only at the end of traceroute (§6.1.1),

we build a destination AS set for each IR. This destination AS set

contains the origin ASes of the traceroute destination addresses

that resulted in a reply from at least one of the IR’s interfaces.

We first compile destination AS sets for each interface. In Fig. 6,

we add ASD to the destination AS sets for a2, b, and c . The lone
exception is when a traceroute ends in an Echo Reply, in which

case we do not record the destination AS for the last IR. In this case

the destination AS adds no value, since it is always the same as the

interface’s origin AS, owing to the fact that the source address of

an echo reply is simply the destination address probed.

We aggregate the destination AS sets for each interface on an

IR into a single destination AS set for that IR. The possibility of

prefix reallocation by ISPs [23] complicates this aggregation process.

To detect likely reallocated prefixes, we look for interfaces with

exactly two destination ASes, where one of the ASes matches the

interface’s origin AS, and the other AS has a customer cone of at

most five ASes. This restriction on the customer cone size ensures

we capture ASes who are small enough to likely receive reallocated

prefixes from their provider. When these two ASes have no BGP-

observable relationship, we assume that the relationship between

them is missing due to prefix aggregation, which occurs when

the provider aggregates the reallocated prefix into its own BGP

announcements. If so, we remove the destinationASwith the largest

customer cone, which we infer to be the reallocating provider. After

removing reallocated provider ASes, the IR destination AS set is

simply the union of its interface destination AS sets.

5 PHASE 2: ANNOTATE LAST HOPS
In many datasets, the vast majority of IRs (≈ 98% in CAIDA’s Feb-

ruary 2018 ITDK [6]) have no outgoing links, caused by several

factors: the IR was the destination or last reachable hop on a path

probed by traceroute; or intermediate nodes rate-limited, blocked,

or dropped ICMP responses. Phase 2 uses the destination AS sets

compiled in the previous phase to annotate each IR, without out-

going links, with their operating AS regardless of the reason. The

intuition behind this phase is to find a single AS with a known AS

relationship with the IR’s other origin ASes. The following heuris-

tics first derive a list of acceptable candidates, then infer the best

among them.

 IR1

a1
ASA

c
ASC

 IR2
 ASB

b1
ASB

 IR3
 ASD

b2
ASB

a2
ASA

dst:{ASD,ASE}

dst:{ASB}

Figure 7: Using paths from Figure 2, IR2 was seen by paths
going to ASB so its destination AS set is {ASB }. Since ASB
matches the origin AS of interface b1, IR2 is annotated with
ASB . IR3 was seen by paths going to both ASD and ASE so its
destination set includes both. ASD has a relationship with
ASB so IR3 is annotated with ASD .

5.1 When the Destination AS Set is empty
Since we do not use echo replies to build the destination AS set

(§4.4), when all interfaces on an IR are only seen in echo replies,

the destination AS set will be empty. We have only the origin AS

set to reason about the IR. In the February 2018 ITDK, 73.3% of

last hop IRs have an empty destination AS set. We do not know of

any techniques for improving the mappings for these IRs without

additional probing.

If one or more ASes in the origin AS set has a relationship with

all other ASes in the set, we select that AS. In the event of a tie, we

select the AS with the smallest customer cone, inferring that AS

to be a customer of the other ASes. Otherwise, we look for an AS

not in the origin AS set that has a relationship to all ASes in the

set, and infer that AS to be connected to the other ASes. Finally,

we select the AS with the most interface AS mappings in the set,

breaking ties by selecting the AS that has the smallest customer

cone.

5.2 When the Destination AS Set is not empty
Destination ASes for an IR enable greater accuracy than relying

on the IR’s interfaces alone, because destination ASes can provide

topological constraints that inform router ownership. The order in

which we describe the different cases is both the order in which

they appear in the algorithm (Alg. 1), and their frequency order in

our datasets.

Algorithm 1 Annotating Last Hop Router, ir

1: D ← destinationASes[ir]
2: O ← {i ∈ ir | i .asn}
3: if |O ∩ D | = 1 then return the single AS

4: Dr el ← {d ∈ D | ∃o ∈ O : hasRelationship(d,o) }
5: if |Dr el | > 0 then
6: return max

d ∈Dr el
|customerCone[d] ∩ D |

7: a ← min

asn∈D
coneSize[asn]

8: C ← customers of any o ∈ O
9: if |providers[a] ∩C | = 1 then return the single AS

10: return a

61

Pushing the Boundaries with bdrmapIT IMC ’18, October 31-November 2, 2018, Boston, MA, USA

Overlapping ASes (line 3): As we visit each IR, we first select

the ASes in common between the origin and destination AS sets.

When there is only one overlapping AS, we infer that AS to operate

the router. In case there are multiple overlapping ASes, we select

the AS with the smallest customer cone, assuming this AS is using

a reallocated prefix from the larger AS.

Relationship Between Origins and Destinations (lines 4-6):
If there are no overlapping ASes, we next look for destination ASes

that have a relationship with any of the origin ASes. If there is only

a single AS, we use it as the AS annotation. If there are multiple, we

use the AS with the largest customer cone, inferring it is a transit

provider for the others. In fig 7, the relationship between interface

b2’s ASB and ASD in IR3’s destination justifies annotating IR3 with
ASD .

NoRelationship ASes (lines 7-10): The final case is when there
is no AS relationship between any destination and origin ASes.

Initially, we look for an AS between the origins and destinations,

specifically looking for ASes that are both a provider to at least one

destination AS, and also a customer of at least one origin AS. If we

find exactly one such AS, we annotate the IR with it. Otherwise,

we select the destination AS with the smallest customer cone.

6 PHASE 3: GRAPH REFINEMENT
The graph refinement loop has two steps. The first step iterates

over the IRs, using their outgoing links to annotate IRs with their

operating AS (§6.1). The second step relies on IR annotations to

update the AS annotation of each interface with the interconnecting

AS (the other side of the link) (§6.2).

Prior to entering the graph refinement loop, bdrmapIT initial-

izes all interface annotations with the origin AS of the interface.

Throughout iterations of the graph refinement loop, annotations

propagate across the graph, enabling bdrmapIT to refine the anno-

tations, improving its accuracy (§6.3). We iterate until we reach a

repeated state, i.e., when all of the annotations at the end of one

iterations are the same as the annotations at the end of a previous

iteration.

6.1 Annotate IRs
The first phase of refinement is to annotate all IRs with an AS

(Alg. 2). Intuitively, we use the current AS annotations of the IRs

and interfaces to determine the most frequently appearing AS for an

IR’s set of subsequent interfaces, similar to MAP-IT’s approach. We

also leverage adapted bdrmap heuristics and framing assumptions

to apply exceptions and tiebreakers.

First, we sum the votes of subsequent interfaces (§6.1.1). We

assume that typically, the AS with the most votes, representing the

largest number of links from an IR, is the IR operator. Next, we

change votes if we encounter a reallocated prefix (§6.1.2). We then

check if the votesmatch one of our exception conditions (§6.1.3) that

violate the assumptions of our majority-vote annotation technique.

If the votes do not match any exception condition, we give each

IR interface a vote, using its origin AS, and select the AS with the

highest number of votes, breaking ties if necessary (§6.1.4). Finally,

we check for a hidden AS in §6.1.5, possibly replacing the selected

AS with a hidden AS. bdrmapIT uses the final AS selection as the

IR’s AS annotation.

Algorithm 2 Annotating IR, ir

1: V : counter for AS votes

2: M : map of ir origin ASes to subsequent ASes

3: for all interface j ∈ subseqent[ir] do
4: a ← IRLinkHeuristics(ir , j) ▷ §6.1.1

5: if a != NULL then
6: increment(V [a])

7: ∀o ∈ Sir, j : add o toM[a]
8: Fix reallocated prefixes ▷ §6.1.2

9: for all i ∈ ir .interfaces do increment(V [i .as])

10: Look for exception cases ▷ §6.1.3

11: R ← ir .origins ∪ {v ∈ V | ∃o ∈ M[v] : rel(o,v)}
12: if R != ir .origins then return max

v ∈R
V [v] ▷ §6.1.4

13: a ← max

v ∈V
V [v] ▷ §6.1.4

14: return Look for hidden AS betweenM[a] and a

6.1.1 Apply Link Vote Heuristics. The first step is to count the link

votes based on three heuristics represented in Alg. 3. As explained

in §4.2, when computing the link votes for an IR, we only use the

N
←→ links, relying on

E
←→ and

M
←→ links only when they are the only

links available. This step begins by checking for the three cases

(line 2-8, detailed next) in which we do not use the AS annotation

on the interface as the vote. Usually, none of these cases apply, and

we rely on the interface’s annotation (line 9).

Algorithm 3 IRLinkHeuristics(ir , j)

1: if j .as ∈ Lir, j then return j .as

2: if j ∈ IXP addresses then return max

a∈Lir , j
coneSize[a]

3: ASj ← annotation[j .ir]
4: if ASj is unannounced then return NULL

5: if j is unannounced then return ASj

6: if j .asn , ASj ∧ ∃a ∈ Lir, j : hasRel(a,ASj) then
7: D ← the set of destination ASes for link Eir, j
8: if j .asn < D then return ASj

9: return annotation[j]

IXP Address (line 2):When ir ’s subsequent interface j is an IXP
public peering address, we instead use the AS in Lir, j (the origin
AS set for interfaces on ir seen prior to j in a traceroute) with

the largest customer cone; this AS is likely the top of the transit

hierarchy. This choice reflects conventional assumptions [17] that

in general AS paths are valley-free, contain at most one peering

link, and that networks do not forward packets from a provider to

a peer. Since we have a strong indication that i is used for a public

peering link, we try to identify the likely transit provider AS among

the origin ASes of the ir interfaces.
Unannounced Addresses (line 5): After ensuring the subse-

quent interface address does not match a prefix in our IXP dataset,

we check if the address fails to match any prefix in BGP announce-

ments or RIR delegations, which we call unannounced addresses.

In the datasets used in §7, this occurs for 0.1% of the interface

62

IMC ’18, October 31-November 2, 2018, Boston, MA, USA A. Marder et al.

IR1
?

ASX

a
ASA

IR2
ASX

u1
?

IR3
ASX

u2
?

IR4
ASX

u3
?

Figure 8: Annotating IRs with unannounced interface ad-
dresses. IR4 was annotated by the last hop heuristic. In the
first iteration of the graph refinement loop IR2 and IR3 are
annotated with ASX , enabling the annotation of IR1.

 IR1
AS?

IR2
ASB

c
ASC

L(IR1,c)={ASA}a
ASA

Figure 9: Interface c is potentially a third-party address be-
cause its origin ASC , its IR’s annotation ASB , and the ASes
{ASA} in LI R1,c are all different.

addresses. While the empty origin AS for the subsequent inter-

face provides no value, we can instead give a vote to its IR’s AS

annotation.

There are two ways that IRs with unannounced interface ad-

dresses receive annotations, either using destination ASes in §5 or

using subsequent ASes in this step. In this heuristic, we are con-

cerned with IRs that have a link to a subsequent interface with an

unannounced address, in which case we give a vote to the IR’s AS

annotation. Due to the iterative nature of the graph refinement loop,

using the AS annotation of the subsequent interface’s IR enables us

to annotate IRs with links to unannounced addresses, even when

they are several hops removed from an interface with an address in

our IP-AS mappings, or an IR annotated in §5. As shown in Fig. 8,

by the second iteration of the graph refinement loop we used the

AS annotation for IR4 to correctly annotate IR1 with ASX , even
though IR1 only has links to unannounced addresses.

Third-Party Addresses (lines 6-8): At this point, we know that

the subsequent interface address is not in our IXP dataset, and has

a matching prefix in either BGP announcements or RIR delegations.

The goal in this step is to assess whether we should use the origin

AS as a constraint, which we do unless we believe the router used

a third party address to reply.

Third-party addresses typically result from asymmetric routing,

when the interface used to respond to a traceroute probe (egress)

is different from that which received the probe (ingress) [19,26].

When the ingress and egress interfaces use the same AS address

space, or the router puts the ingress address in the reply source

field, asymmetric routing presents no problems in IR annotation.

Difficulties arise when the egress and ingress interfaces come from

different AS address spaces, and the router uses the egress interface

address as the source address of the reply.

IR2
ASC

IR2
ASC

IR1
ASC

c
ASC

p1
ASP

p2
ASP

x.x.x.1
ASP

x.x.x.5
ASP

Figure 10: When ASC is a customer of ASP we annotate IR1
with ASC .

Any interface with an origin AS that is both not in the link’s

origin AS set, and differs from its IR’s annotation, is a potential third-

party address (Fig. 9). bdrmapIT uses a two-step test to infer whether

c is a third-party address. First, there must be an AS relationship

between at least one AS in LI R1,c and ASB . This AS relationship

indicates that the traceroute probe could get toASB from the origin

AS without going throughASC . Second,ASC must not appear in the

destination ASes specific to IR1 and c . This test indicates that probes
transmitted from IR1 to c were never destined to ASC . While not

exhaustive, this test gives a reasonably strong indication that c is
likely a third-party address, so we should not include its annotation

in the voting. Instead, we include a vote for IR2’s annotation, in this

case ASB . If c’s IR does not yet have an annotation, only possible

in the first iteration of the graph refinement loop, we skip the

third-party tests entirely.

6.1.2 Correct Reallocated Prefixes. In the previous step we deter-

mined the vote for each subsequent interface independently, but in

this step we evaluate all of the subsequent interfaces together. As

in §4.4, we try to identify situations where a provider reallocated

some of its address space to a customer (Fig. 10), but continues

to announce a containing prefix into BGP. To prevent incorrect

annotations of a provider router with a customer AS, we take a

conservative approach. Our test first looks at all of IR1’s subsequent
interfaces that map to an AS seen in its origin AS set, in this case

x.x.x.1 and x.x.x.5. Then this step collects the IR annotations for

those interfaces, along with the /24 prefix for their addresses. If all

of the annotations are the same, the single annotation is a customer

of an IR origin AS, and all of the addresses have the same /24 prefix,

we conclude that the prefix was reallocated. In this case, all of the

matching subsequent interfaces have the prefix x.x.x/24, and their

IRs are annotated with ASC , so we change their votes from ASP to

the customer ASC .
To avoid mistakenly annotating an IR with a customer AS, we re-

quire a single prefix for all subsequent interfaces, as well as multiple

links. Often, the unannounced reallocated prefixes are smaller than

/24, but matching against a /24 catches smaller prefixes without

incurring too much risk of matching too large a prefix.

6.1.3 Check for Exceptions. From developing and using MAP-IT we

learned that, in general, the AS that receives the highest number of

votes operates the IR. Adapting bdrmap heuristics for more general

use in bdrmapIT led us to consider two exceptions to this general

rule.

63

Pushing the Boundaries with bdrmapIT IMC ’18, October 31-November 2, 2018, Boston, MA, USA

IR1
?

c
ASC

p1
ASP

p2
ASP

Figure 11: Amultihomed customer can present an exception
to majority voting, as when ASC is a multihomed customer
ofASP , selecting themost frequent AS results in IR1 inferred
to be owned by ASP instead of ASC .

Multihomed to a Provider: The most common exception is for

links between transit providers and customer ASes, where select-

ing the AS with the most votes results in an incorrect choice. In

accordance with industry convention, transit link interfaces usually

use addresses from the provider’s address space. The result is that

border IRs operated by a customer AS often have more interfaces

with addresses from their providers’ address space than links to

subsequent interfaces with addresses from the customer’s address

space.

When the customer is a large ISP the IR voting system usually

does not make false inferences, but when the IR belongs to a stub AS,

our voting system can make false inferences. When a customer IR is

multihomed to a transit provider, the IRwill havemultiple interfaces

each with an address from the provider; if traceroute paths observe

fewer links to IRs with addresses in the customer network, as in

Fig. 11, a pure voting system will make a false inference.

We identify and account for these exceptional cases. When there

is only a single subsequentASj , we check to see ifASj is a customer

of any IR origin AS. Returning to the example in Fig. 11 we check

if ASC is a customer of ASP , and annotate IR1 with ASc if it is.
We do not use the single subsequent AS exception when there is

no relationship between it and any origin AS, instead relying on

votes (§6.1.4) or looking for a hidden AS (§6.1.5). We choose not

to select an AS yet since BGP AS paths typically contain the vast

majority of transit relationships.

Multiple Peers/Providers: The second exception is when the IR

interfaces all have the same origin AS, there aremultiple subsequent

ASes, and all of the subsequent ASes are either peers or providers

of that AS. In this case, we expect that the origin AS is the AS that

operates the IR, since it is the common denominator between the

subsequent ASes. Conversely, when the IR has multiple interface

origin ASes, and there is a single subsequent AS that is a peer or

provider of every origin AS, we select the subsequent AS for the

same reason. We annotate the IR with the selected AS provided

that it has at least half as many votes as the AS with the most votes.

If it has less than half the votes, it suggests that it is not actually

the operating AS, so we do not apply the exception.

6.1.4 Apply IR Vote Heuristics. After determining the subsequent

interface votes, adjusting reallocated prefixes, and checking for

exception conditions, we use the votes to determine the AS an-

notation for the IR. As long as at least one subsequent AS has an

observed relationship with an IR origin AS, then the election is held

between the IR origin ASes and any subsequent ASes that have a

ASC

ASB

IR

c1
ASC

c2
ASC

a2
ASA

ASA

Figure 12: Hidden ASes occur when traceroutes traverse an
IR in ASB , but traceroute never observes any IP addresses
from ASB on it or any IR adjacent, suggesting an AS path of
A-C, instead of A-B-C

relationship with an IR origin AS. This constraint helps ensure that

the selected AS will have a relationship with at least one IR origin

AS. If the new restricted set only contains IR origin ASes, then we

revert to using all of the ASes with a vote, but check for a hidden

AS (§6.1.5) following this step.

We use the selected AS, which has the most votes, as the annota-

tion for the IR. Our justification follows from the observation that

an interface address in ASA indicates that its IR, the IRs connected

to it, or both, are operated by ASA, since interdomain link inter-

faces use the address space of only one of the two networks. Viewed

through this lens, every interface on, and subsequent to, the IR is

circumstantial evidence of the operating AS. Selecting the AS with

the most votes also selects the AS with the most circumstantial

evidence.

Occasionally, multiple ASes will tie for the highest vote. We

break the tie by selecting the most likely customer AS from the

group, by choosing the AS with the smallest customer cone. Since

transit link interfaces are usually addressed from the provider’s

address space, and we expect that most interdomain links seen in

traceroute are transit links, we try to select the customer AS.

6.1.5 Check for a Hidden AS. Finally, we check to see if our selec-

tion has a relationship to any member of the IR’s origin AS set. If

so, we use this selection for the IR annotation. Otherwise, we look

for the possibility of a hidden AS. Occasionally, despite a traceroute

traversing an AS, it reports no IP addresses from that AS (Fig. 12).

We most often encounter hidden ASes when a transit link between

a small ISP and its customer uses the customer’s address space.

To avoid an incorrect annotation, we attempt to find an AS that

bridges between the selected AS and subsequent ASes by finding

an AS that is a customer of the selected AS, and a provider of a

subsequent AS. When there is a single such AS, we change our

selection to that AS. Otherwise, we leave our selection unmodified.

6.2 Annotate Interfaces
Following the router annotation step, we update the interface AS

annotations to align the interface AS annotations with the router it

connects to. As long as the interface address is not an IXP address,

we assume the interface connects to one router, and therefore one

64

IMC ’18, October 31-November 2, 2018, Boston, MA, USA A. Marder et al.

IR1
ASB

a
ASA

(a)

IR1
ASB

b
ASA

IR2
ASA

a1
ASA

IR3
ASA

a3
ASA IR4

ASC
c

ASC

a2
ASA

(b)

IR1
ASB

b
ASB

IR2
ASB

IR3
ASB

IR4
ASB

b1
ASB

b2
ASB

b3
ASB

(c)

Figure 13: (a) If the interface’s origin AS is different than the
IR’s annotation, we annotate with the interface’s origin AS.
(b,c) If they are the same, we annotate with a single AS from
the connected IRs.

AS. However, the operator of the connected router might be ob-

scured, either due to mistakes in the router annotations, or as a

result of it appearing as a third-party address. This step selects a

single AS annotation for the interface.

An interface origin AS will either come from the AS operating

its router, or from a different AS directly connected to the interface

that provides the interface address for interconnection. Thus, if

the origin AS for an interface differs from the AS annotation for

the interface’s IR, we use the interface address’ origin AS as the

interface AS annotation, since that AS operates the connected IR.

That is, if the interface address does not come from the AS operating

the router it is on, it must come from the AS operating the router it

connects to. In Fig. 13a, we previously inferred that IR1 is operated
by ASB , leading us to conclude that a connects to a router operated

by ASA, so we annotate a with its origin ASA.
When the interface origin AS is the same as the current AS

annotation for IR1 (Fig. 13b and Fig. 13c), we select one of the

ASes from the IRs connected by links in our graph. Similar to §6.1,

we use a voting system, but in this step we give each connected

IR a vote for each of its interfaces seen prior to interface b in a

traceroute. In Fig. 13b, ASA receives three votes and ASC , which
might be an errant annotation, receives one vote. To determine the

AS annotation of the interface, we select the AS with the most votes,

breaking ties using the tied AS with the largest customer cone that

also has a BGP-observed relationship to the interface origin AS. If

no tied AS has a relationship to the interface AS, then we use the

interface address’ origin AS as the annotation to avoid negatively

impacting the IR annotations with an incorrect inference.

Finally, so far we have focused on potential interdomain links.

It is possible, as in Fig. 13c, that the interface origin AS and IR AS

IR2
ASB

b
ASB

IR1
ASB

(a) Iteration 1: IR Annotation

IR2
ASB

b
ASA

IR3
ASA

IR1
ASB

(b) Iteration 1: Interface Annotation

IR2
ASB

b
ASA

IR1
ASA

(c) Iteration 2: IR Annotation

Figure 14: bdrmapIT refines the graph as it progresses from
the first iteration to the second. The annotation for IR1 is
corrected from ASB (a) to ASA (c).

annotations are the same, because the same AS operates its router

and the connected router. In these cases we annotate b with its

origin AS.

6.3 Refine the Graph
bdrmapIT repeatedly updates IR annotations (§6.1) and interface

annotations (§6.2) until no modifications are made in an iteration.

Fig. 14a illustrates the approach. During the IR annotation stage

of the first iteration, IR1 has only a single link to the subsequent

interface b, with AS annotation ASB . If ASB is either a customer of

ASA, or a peer with a smaller customer cone, we might incorrectly

annotate IR1 with ASB . Fortunately, in the interface annotation

stage (Fig. 14b), b has links to two IRs. Since IR3 has two interfaces,
ASA receives themost votes, changingb’s annotation from its origin

AS toASA. Whenwe return to IR annotations in the second iteration

of the graph refinement loop (Fig. 14c), IR1 uses the new annotation

for b, which corrects the annotation for IR1 to ASA.

7 EVALUATION
We validate our approach against ground truth from four networks:

a Tier-1 network, a large access network, and two research and

education (R&E) networks. Except for one R&E network, we reused

the 2016 ground truth acquired for the bdrmap evaluation, which

was gathered by first running bdrmap from a VP in each network.We

created the 2018 ground truth dataset by first running bdrmapIT on

traceroutes initially collected by bdrmap. In both cases, the resulting

inferences were sent to the network operators for each VP network

to obtain a validation dataset. We did not ask them to validate

missing inferences due to the burden on the network operator,

although a small number of interdomain links appear in our ground

truth that bdrmap did not identify. The remaining R&E network,

labeled R&E 1, provided us with router configurations of its primary

AS, which includes internal and interdomain links involving its

backbone.

65

Pushing the Boundaries with bdrmapIT IMC ’18, October 31-November 2, 2018, Boston, MA, USA

2016
Tier 1
2688

2016
R&E 2

105

2016
L Access

179

2018
Tier 1
2556

0.9
1.0

A
cc

u
ra

cy

Single In-Network VP

bdrmapIT

bdrmap

Figure 15: (all data) bdrmapIT is more accurate than bdrmap for the 4 ground
truth networks. Bottom number reports links visible in the paths.

To evaluate bdrmapIT, we ran three separate experiments us-

ing datasets from the spring of 2016 and spring of 2018. We used

validation data from the same time period as the dataset.

(1) We regression tested against bdrmap to ensure that the adapted

heuristics in bdrmapIT perform at least as well as the original

bdrmap heuristics (§7.1);

(2) We demonstrated the power of our new approach on Internet-

wide datasets with no VPs in our validation networks, show-

ing that bdrmapIT has high accuracy and vastly outperforms

MAP-IT (§7.2);

(3) We show that our accuracy does not diminish when datasets

have fewer traceroute VPs than a full ITDK (§7.3).

7.1 bdrmapIT Validation on bdrmap Data
The first experiments compare mappings generated by bdrmapIT to

inferences drawn by bdrmap, ensuring that our adaptations of the

bdrmap heuristics do not adversely affect their accuracy. bdrmap

has been running in several networks since 2016; we feed the

traceroutes and alias resolution from those bdrmap runs as input

to bdrmapIT. We used the data that bdrmap gathered as an existing

dataset, ensuring that bdrmapIT and bdrmap base their mappings on

identical traceroute data.

Our validations (Fig. 15) confirm that bdrmapIT performs at least

as accurately as bdrmap in its limited problem domain, which is

mapping the border of a single network using traceroutes from a

single VP in that network. In fact, bdrmapIT performs slightly more

accurately than bdrmap, primarily due to mapping past the VP AS

border, enabling better hidden AS and third party identification.

While these results verify that adapting the bdrmap heuristics to the

MAP-IT framework did not weaken their ability to map the border

of the VP network, they do not demonstrate the true benefits of

bdrmapIT’s combined heuristics. The primary goal in the creation of

bdrmapIT is accurate border mapping for all ASes in Internet-wide

traceroute datasets, which is shown in the next set of experiments.

7.2 bdrmapIT Validation on ITDK Data
The second set of experiments demonstrate the benefit of bdrmapIT’s

adapted heuristics to mapping network borders in Internet-wide

datasets. To highlight the differences between bdrmapIT and bdrmap,

we used traceroute datasets without VPs in any of the validation

0.9
1.0

P
re

ci
si

on
–
T
P
/(
T
P

+
F
P

) No In-Network VP: Correctness

bdrmapIT

MAP-IT

2016
Tier 1
2516

2016
R&E 1

174

2016
R&E 2

51

2016
L Access

146

2018
Tier 1
2477

2018
R&E 1

190

0.4
0.5
0.6
0.7
0.8
0.9
1.0

R
ec

al
l

–
T
P
/(
T
P

+
F
N

) No In-Network VP: Coverage

bdrmapIT

MAP-IT

Figure 16: (no in-net VPs) bdrmapIThas far better coverage thanMAP-IT.We
do not use in-network VPs. Under the network label is the number of links
visible in the paths.

networks. We compare bdrmapIT’s results to MAP-IT, which was also

designed for Internet-wide border mapping.

For these experiments we used the publicly available CAIDA

ITDK datasets for March 2016 [1] and February 2018 [6], which

include traceroutes run over 15 days and alias resolution for some

interfaces seen in the traceroutes. From each ITDK we removed

traceroutes from a VP in one of our ground truth networks, ensuring

that no traceroutes originated in any network we validated against.

This left us with traceroutes from 109 of 111 VPs in the 2016 ITDK,

and from 141 of 146 VPs in the 2018 ITDK. All the traceroutes used

ICMP Paris traceroute [15,39], which controls the IP and transport

headers to reduce load balancing, and a combination of iffinder [21]

and MIDAR [22] for alias resolution.

Similar to MAP-IT’s validation [31], we present the precision and

recall of our inferences. Precision in this context is the fraction

of inferred interdomain links that are correct, i.e., they are not

internal to a network, and we correctly identified the connected

networks. Recall is the number of correctly identified interdomain

links that appear in the dataset. When computing the recall, we

exclude interfaces which only appeared as Echo Replies. Unlike in

the previous experiments, which only validate correctness, since

we obtained the ground truth based on bdrmap’s inferences, these

experiments test bdrmapIT’s ability to find interdomain links in a

dataset.

Fig. 16 shows that bdrmapIT clearly outperforms MAP-IT, with

better precision for all of the ground truth networks except the

large access network, and vastly better recall, demonstrating the

benefit of the adapted bdrmap heuristics. Overall, bdrmapIT achieved

91.8%-98.8% precision, and 93.2%-97.1% recall.

All the adapted heuristics play a role in bdrmapIT’s higher accu-

racy, but the largest improvement comes from the use of destination

66

IMC ’18, October 31-November 2, 2018, Boston, MA, USA A. Marder et al.

0.9
1.0

P
re

ci
si

on
–
T
P
/(
T
P

+
F
P

) No In-Network VP (No Last Hop): Correctness

bdrmapIT

MAP-IT

2016
Tier 1
1566

2016
R&E 1

171

2016
R&E 2

34

2016
L Access

139

2018
Tier 1

853

2018
R&E 1

186

0.6
0.7
0.8
0.9
1.0

R
ec

al
l

–
T
P
/(
T
P

+
F
N

) No In-Network VP (No Last Hop): Coverage

bdrmapIT

MAP-IT

Figure 17: (no in-net VPs and no last hops) bdrmapIT has bet-
ter coverage of interdomain links seen in the middle of the
paths. Under the network label is the number of links.

ASes in the last hop heuristic (§5). MAP-IT does not use destina-

tion information, so it is unable to identify those links. Another

prominent reason is that bdrmapIT’s enhanced ability to leverage

AS relationships, specifically in the third party heuristic (§6.1.1) and

the multihomed customer exception (§6.1.3), improves on MAP-IT’s

coverage of low visibility links at the Internet edge. Links between

an ISP and an edge AS are especially problematic for MAP-IT, since

traceroute often reveals more interfaces from the provider’s address

space on a border router than customer addresses past the border,

if an address from the operating AS even appears in a traceroute.

Finally, Fig. 17 shows the difference in coverage when we exclude

the interdomain links which only appear as the last hop in the

traceroute dataset. bdrmapIT still substantially outperforms MAP-

IT, indicating that the adapted heuristics, and our overall more

aggressive inference strategy, leads to significantly better results.

7.3 Effect of Decreasing VPs
The next set of experiments evaluated whether bdrmapIT’s perfor-

mance was reliant on the number of VPs included in the ITDK

datasets. We validated bdrmapIT’s performance using groups of 20,

40, 60, and 80 VPs, running five experiments in each group using

five randomly chosen sets of VPs. For all experiments we excluded

the VPs in our ground truth networks.

The results are shown in Fig 18. Each graph shows the average

of the five sets of VPs for each group, along with the standard error.

Surprisingly, bdrmapIT’s accuracy does not diminish as the number

of VPs decreases. In the groups with 20 VPs, the precision ranges

from 92.4%-99.6% and the recall is between 95.4%-98.6%. Similarly,

when we increase the number of VPs to 80, the precision (93.1%–

98.5%) and recall (94.0%–97.2%) remain roughly equivalent, with the

means falling within a standard deviation of each other. Although

0.9
1.0

P
re

ci
si

on

Varying Number of VPs: Correctness

20 40 60 80
Number of VPs

0.9
1.0

R
ec

al
l

Varying Number of VPs: Coverage

Tier 1 2016

R&E 1 2016

R&E 2

L Access

Figure 18: bdrmapIT performance is does not diminish as the
number of VPs is reduced. The bars show the average for the
precision and recall, along with the standard error between
the five groups.

20 40 60 80
Number of VPs

0.6

0.7

0.8

0.9

1.0

F
ra

ct
io

n
of

V
is

ib
le

L
in

k
s

Varying Number of
VPs: Visible Links

Tier 1 2016

R&E 1 2016

R&E 2 2016

L Access 2016

Figure 19: The number of visible links (seen in traceroutes)
increases with the number of VPs. The bars show the num-
ber of interdomain links visible in the dataset using only the
VPs in the set, along with the standard error.

the number of interdomain links visible in the dataset drops with

the reduction in VPs (Fig 19), bdrmapIT’s ability to correctly identify

those that appear does not diminish. This is an important result, as

researchers might have only a few VPs at their disposal.

7.4 Importance of Alias Resolution
Finally, we investigate the impact of alias resolution on bdrmapIT’s

accuracy. First, we investigate the impact of using a different alias

resolution technique on the same set of traceroutes. Specifically,

we use kapar [20] along with midar and iffinder, while the results

67

Pushing the Boundaries with bdrmapIT IMC ’18, October 31-November 2, 2018, Boston, MA, USA

2016
Tier 1

2016
R&E 1

2016
R&E 2

2016
L Access

2018
Tier 1

2018
R&E 1

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

A
cc

u
ra

cy

Multiple Alias IRs: Accuracy

midar

kapar

Figure 20: Comparison between alias resolution with and
without kapar, excluding all IRs without multiple aliases.
The decreased alias group precision using kapar decreases
the bdrmapIT’s accuracy for the ITDK datasets, compared to
using midar and iffinder alone.

presented in §7.2 use only the midar and iffinder techniques to

infer router aliases. Second, we show that bdrmapIT performs nearly

equivalently with the midar and iffinder alias resolution as it does

without any alias resolution.

kaparAlias Resolution:Alongwith the alias resolution datasets
we used in §7.2, the CAIDA ITDK includes a second alias resolution

dataset that includes kapar. Unlike midar, which produces highly

precise alias groups, kapar attempts to increase the number of

grouped aliases, which can result in less precise groupings [8]. To

determine the impact of less accurate, but larger alias groups on

bdrmapIT’s inferences, we ran experiments for both the 2016 and

2018 ITDKs using the alias resolution which includes kapar.

The results, shown in Fig 20, clearly demonstrate that the less

precise IRs generated by kapar decrease the accuracy of bdrmapIT’s

inferences. To highlight the differences between the alias group-

ings, in Fig 20 we only include IRs with multiple aliases. In our

ground truth datasets, kapar has a tendency to mistakenly group

interfaces into a single IR, when in actuality they are used on dif-

ferent physical routers. Since bdrmapIT ensures that each router

receives a single AS annotation, and then uses that information to

determine interdomain links, imprecise alias resolution results in

inaccurate inferences.

No Alias Resolution: Our final experiment aims to determine

the impact of using midar and iffinder alias resolution as com-

pared to not using any alias resolution. To do so, we ran bdrmapIT

on the ITDK datasets, but treated each interface as a separate IR.

The results are nearly identical, with less than 0.1% difference in

accuracy between using alias resolution with midar and iffinder,

and using an interface graph with no alias resolution.

Interestingly, the aggregation resulting from alias resolution

can impact the results both positively and negatively. Occasionally,

the additional IR links enable bdrmapIT to more accurately deter-

mine the IR operator, when one or more IR interface would not

have sufficient constraints for bdrmapIT to make a correct infer-

ence. Conversely, reallocated addresses and third party addresses

seen subsequent to a single interface can add confusion, causing

bdrmapIT to infer the incorrect operator for an IR group, while with-

out alias resolution the mistake would be limited to part of the IR. In

our experiments, the negative impacts of alias resolution occurred

exclusively at the edge of the Tier 1 network, where reallocated pre-

fixes are common. Further investigation is necessary to determine

when bdrmapIT with alias resolution performs better than using an

interface graph.

8 CONCLUSION
We addressed the surprisingly challenging problem of mapping the

borders of IP networks, which currently hampers both research

and regulatory efforts. In addressing this challenge, we presented

bdrmapIT, a traceroute analysis technique designed to infer the

operating AS for routers and identify links between Internet net-

works. Our method synthesizes two previous approaches, bdrmap

and MAP-IT, leveraging the strengths of each technique to create a

general-purpose solution.

To evaluate bdrmapIT, we performed experiments from in-network

and out-of-network VPs, validating the accuracy of our technique

and demonstrating that bdrmapIT outperforms its predecessors. We

performed additional experiments demonstrating that bdrmapIT’s

performance does not diminish aswe reduce the number of VPs. Our

results suggest that bdrmapIT can form the foundation upon which

to address other network diagnostic challenges, including conges-

tion measurement [32,38], resilience assessment [14,25,33,36], and

traffic estimation [35]. We publicly release our source code.

68

IMC ’18, October 31-November 2, 2018, Boston, MA, USA A. Marder et al.

REFERENCES
[1] 2016. Internet Topology Data Kit - March 2016. http://www.caida.org/data/

internet-topology-data-kit/.

[2] 2018. AFRINIC Extended Allocation and Assignment Reports. ftp://ftp.afrinic.

net/pub/stats/afrinic.

[3] 2018. APNIC Extended Allocation and Assignment Reports. ftp://ftp.apnic.net/

pub/stats/apnic.

[4] 2018. ARIN Extended Allocation and Assignment Reports. ftp.arin.net/pub/stats/

arin.

[5] 2018. Euro-IX IXP Directory. https://www.euro-ix.net/tools/ixp-directory.

[6] 2018. Internet Topology Data Kit - February 2018. http://www.caida.org/data/

internet-topology-data-kit/.

[7] 2018. LACNIC Extended Allocation and Assignment Reports. ftp.lacnic.net/pub/

stats/lacnic.

[8] 2018. Macroscopic Internet Topology Data Kit (ITDK). http://www.caida.org/

data/internet-topology-data-kit/.

[9] 2018. Packet Clearing House: Internet Exchange Directory. https://prefix.pch.

net/applications/ixpdir/menu_download.php.

[10] 2018. PeeringDB. https://peeringdb.com/api.

[11] 2018. RIPE Extended Allocation and Assignment Reports. ftp://ftp.ripe.net/pub/

stats/ripencc.

[12] 2018. RIPE RIS Raw Data. https://www.ripe.net/analyse/internet-measurements/

routing-information-service-ris/ris-raw-data.

[13] 2018. University of Oregon Route Views Project. http://www.routeviews.org/.

[14] Réka Albert, Hawoong Jeong, and Albert-László Barabási. 2000. Error and attack

tolerance of complex networks. Nature 406 (June 2000).
[15] Brice Augustin, Xavier Cuvellier, Benjamin Orgogozo, Fabien Viger, Timur Fried-

man, Matthieu Latapy, Clémence Magnien, and Renata Teixeira. 2006. Avoiding

Traceroute Anomalies with Paris Traceroute. In Proceedings of the ACM SIGCOMM
Internet Measurement Conference (IMC).

[16] Kai Chen, David R. Choffnes, Rahul Potharaju, Yan Chen, Fabian E. Bustamante,

Dan Pei, and Yao Zhao. 2009. Where the Sidewalk Ends: Extending the Internet

As Graph Using Traceroutes from P2P Users. In Proceedings of ACM CoNEXT.
[17] Lixin Gao. 2001. On Inferring Autonomous System Relationships in the Internet.

IEEE/ACM ToN 9, 6 (2001), 733–745.

[18] B. Huffaker, A. Dhamdhere, M. Fomenkov, and k. claffy. 2010. Toward Topology

Dualism: Improving the Accuracy of AS Annotations for Routers. In Proceedings
of the Passive and Active Measurement Conference (PAM).

[19] Y. Hyun, A. Broido, and k. claffy. 2003. On Third-party Addresses in Traceroute

Paths. In PAM. San Diego, CA.

[20] Ken Keys. 2010. Internet-scale IP alias resolution techniques. ACM SIGCOMM
CCR 40, 1 (2010), 50–55.

[21] Ken Keys. 2018. iffinder. https://www.caida.org/tools/measurement/iffinder/.

[22] K. Keys, Y. Hyun, M. Luckie, and k. claffy. 2013. Internet-Scale IPv4 Alias Resolu-

tion with MIDAR. IEEE/ACM ToN 21, 2 (Apr 2013), 383–399.

[23] Thomas Krenc and Anja Feldmann. 2016. BGP Prefix Delegations: A Deep Dive.

In Proceedings of the ACM SIGCOMM Internet Measurement Conference (IMC).
[24] Anukool Lakhina, John W. Byers, Mark Crovella, and Peng Xie. 2003. Sampling

Biases in IP Topology Measurements. In Proceedings of IEEE INFOCOM.

[25] Matthew Luckie and Robert Beverly. 2017. The Impact of Router Outages on the

AS-level Internet. In Proceedings of ACM SIGCOMM.

[26] Matthew Luckie and kc claffy. 2014. A Second Look at Detecting Third-Party

Addresses in Traceroute Traces with the IP Timestamp Option. In PAM. 46–55.

[27] Matthew Luckie, Amogh Dhamdhere, Bradley Huffaker, David Clark, and kc

claffy. 2016. bdrmap: Inference of Borders Between IP Networks. In Proceedings
of the ACM SIGCOMM Internet Measurement Conference (IMC).

[28] Matthew Luckie, Bradley Huffaker, Amogh Dhamdhere, Vasileios Giotsas, and

kc claffy. 2013. AS Relationships, Customer Cones, and Validation. In Proceedings
of the ACM SIGCOMM Internet Measurement Conference (IMC).

[29] Z Morley Mao, David Johnson, Jennifer Rexford, Jia Wang, and Randy Katz. 2004.

Scalable and Accurate Identification of AS-Level Forwarding Paths. In Proceedings
of IEEE INFOCOM.

[30] Zhuoqing Morley Mao, Jennifer Rexford, Jia Wang, and Randy H Katz. 2003. To-

wards an Accurate AS-Level Traceroute Tool. In Proceedings of ACM SIGCOMM.

[31] Alexander Marder and Jonathan M Smith. 2016. MAP-IT: Multipass Accurate

Passive Inferences From Traceroute. In Proceedings of the ACM SIGCOMM Internet
Measurement Conference (IMC).

[32] Measurement Lab Consortium. 2014. ISP Interconnection and its Impact on

Consumer Internet Performance - A Measurement Lab Consortium Technical

Report. http://www.measurementlab.net/publications/.

[33] Lin Quan, John Heidemann, and Yuri Pradkin. 2013. Trinocular: Understanding

Internet Reliability Through Adaptive Probing. In Proceedings of ACM SIGCOMM.

[34] Chris Ritzo. 2018. Paris Traceroute has a bug, and it causes some bad data.

https://www.measurementlab.net/blog/pt-bug/.

[35] Mario Sanchez, Fabian Bustamante, Balachander Krishnamurthy, Walter Will-

inger, Georgios Smaragdakis, and Jeffrey Erman. 2014. Inter-Domain Traffic

Estimation for the Outsider. In Proceedings of the ACM SIGCOMM Internet Mea-
surement Conference (IMC).

[36] Aaron Schulman and Neil Spring. 2011. Pingin’ in the rain. In Proceedings of the
ACM SIGCOMM Internet Measurement Conference (IMC).

[37] S. Sundaresan, A. Dhamdhere, M. Allman, and k. claffy. 2017. TCP Congestion

Signatures. In Proceedings of the ACM SIGCOMM Internet Measurement Conference
(IMC).

[38] Srikanth Sundaresan, Danny Lee, Xiaohong Deng, Yun Feng, and Amogh Dhamd-

here. 2017. Challenges in Inferring Internet Congestion Using Throughput Mea-

surements. In Proceedings of the ACM SIGCOMM Internet Measurement Conference
(IMC).

[39] Fabien Viger, Brice Augustin, Xavier Cuvellier, Clémence Magnien, Matthieu

Latapy, Timur Friedman, and Renata Teixeira. 2008. Detection, Understanding,

and Prevention of Traceroute Measurement Artifacts. Computer Networks 52, 5
(2008), 998–1018.

[40] Yu Zhang, Ricardo Oliveira, Hongli Zhang, and Lixia Zhang. 2010. Quantifying

the Pitfalls of Traceroute in AS Connectivity Inference. In Proceedings of the
Passive and Active Measurement Conference (PAM).

69

http://www.caida.org/data/internet-topology-data-kit/
http://www.caida.org/data/internet-topology-data-kit/
ftp://ftp.afrinic.net/pub/stats/afrinic
ftp://ftp.afrinic.net/pub/stats/afrinic
ftp://ftp.apnic.net/pub/stats/apnic
ftp://ftp.apnic.net/pub/stats/apnic
ftp.arin.net/pub/stats/arin
ftp.arin.net/pub/stats/arin
https://www.euro-ix.net/tools/ixp-directory
http://www.caida.org/data/internet-topology-data-kit/
http://www.caida.org/data/internet-topology-data-kit/
ftp.lacnic.net/pub/stats/lacnic
ftp.lacnic.net/pub/stats/lacnic
http://www.caida.org/data/internet-topology-data-kit/
http://www.caida.org/data/internet-topology-data-kit/
https://prefix.pch.net/applications/ixpdir/menu_download.php
https://prefix.pch.net/applications/ixpdir/menu_download.php
https://peeringdb.com/api
ftp://ftp.ripe.net/pub/stats/ripencc
ftp://ftp.ripe.net/pub/stats/ripencc
https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris/ris-raw-data
https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris/ris-raw-data
http://www.routeviews.org/
https://www.caida.org/tools/measurement/iffinder/
http://www.measurementlab.net/publications/
https://www.measurementlab.net/blog/pt-bug/

	Abstract
	1 Introduction
	2 Related Work
	3 Overview
	3.1 Constructing Interface Graph (sec:datapreparation)
	3.2 Annotating Last Hops with Ownership (sec:lasthop)
	3.3 Annotating IRs and Interfaces (sec:graphrefinementloop)

	4 Phase 1: Construct the Graph
	4.1 Label AS-level Metadata
	4.2 Assign Link Confidence Labels
	4.3 Assign Origin AS Sets to IRs
	4.4 Assign Destination ASes to IRs

	5 Phase 2: Annotate Last Hops
	5.1 When the Destination AS Set is empty
	5.2 When the Destination AS Set is not empty

	6 Phase 3: Graph Refinement
	6.1 Annotate IRs
	6.2 Annotate Interfaces
	6.3 Refine the Graph

	7 Evaluation
	7.1 bdrmapIT Validation on bdrmap Data
	7.2 bdrmapIT Validation on ITDK Data
	7.3 Effect of Decreasing VPs
	7.4 Importance of Alias Resolution

	8 Conclusion
	References

